HemGrupperDiskuteraMerTidsandan
Denna webbplats använder kakor för att fungera optimalt, analysera användarbeteende och för att visa reklam (om du inte är inloggad). Genom att använda LibraryThing intygar du att du har läst och förstått våra Regler och integritetspolicy. All användning av denna webbplats lyder under dessa regler.
Hide this

Resultat från Google Book Search

Klicka på en bild för att gå till Google Book Search.

Python for Data Analysis: Data Wrangling…
Laddar...

Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython (utgåvan 2012)

av Wes McKinney

MedlemmarRecensionerPopularitetGenomsnittligt betygOmnämnanden
263475,683 (3.7)2
Python for Data Analysis is concerned with the nuts and bolts of manipulating, processing, cleaning, and crunching data in Python. It is also a practical, modern introduction to scientific computing in Python, tailored for data-intensive applications. This is a book about the parts of the Python language and libraries you'll need to effectively solve a broad set of data analysis problems. This book is not an exposition on analytical methods using Python as the implementation language. Written by Wes McKinney, the main author of the pandas library, this hands-on book is packed with practical cases studies. It's ideal for analysts new to Python and for Python programmers new to scientific computing. Use the IPython interactive shell as your primary development environment Learn basic and advanced NumPy (Numerical Python) features Get started with data analysis tools in the pandas library Use high-performance tools to load, clean, transform, merge, and reshape data Create scatter plots and static or interactive visualizations with matplotlib Apply the pandas groupby facility to slice, dice, and summarize datasets Measure data by points in time, whether it's specific instances, fixed periods, or intervals Learn how to solve problems in web analytics, social sciences, finance, and economics, through detailed examples… (mer)
Medlem:tilke
Titel:Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython
Författare:Wes McKinney
Info:O'Reilly Media (2012), Edition: 1, Paperback, 470 pages
Samlingar:Ditt bibliotek
Betyg:
Taggar:programming language, python, data mining

Verkdetaljer

Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython av Wes McKinney

Ingen/inga.

Ingen/inga
Laddar...

Gå med i LibraryThing för att få reda på om du skulle tycka om den här boken.

Det finns inga diskussioner på LibraryThing om den här boken.

» Se även 2 omnämnanden

Visar 4 av 4
This has the flavor of an O'Reilly Nutshell book because it's mostly a tour of pandas features. Most of the examples are unmotivated and use random numbers instead of real data. If you're looking for a pandas tutorial this is probably fine. If you're looking for a pandas tutorial plus a primer on data analysis, this falls short of the bar set in the R world by Wickham's R for Data Science. ( )
  encephalical | Jun 17, 2019 |
A better title for this book might be Pandas and NumPy in Action

As the creator of the pandas project, a Python data analysis framework, [a:Wes McKinney|6007417|Wes McKinney|http://www.goodreads.com/assets/nophoto/nophoto-U-50x66-347709e8e0c4cd87940bf10aebee7a1c.jpg] is well placed to write this book. His experience and vision for the pandas framework is clear, and he is able to explain the main function and inner workings of both pandas and another package, NumPy, very well.

Although the title of the book suggests a broad look at the Python language for data analysis, McKinney almost exclusively focuses on an in-depth exploration of pandas. The book started with a great deal of promise, but as McKinney delved into the detail of NumPy and pandas, the ideas and examples of data analysis are replaced with random number datasets.

The book became a tiresome parade of pandas feature after pandas feature. Each example was stripped of meaning without any real world basis. It would have been great to see more real world cases drawn from McKinney's experience as a day to day user of pandas and Python for data analysis.

This book would be ideal if you're using, or thinking about using NumPy or pandas. If you're looking for a broader introduction to Data Analysis with Python, this might not be the book for you. ( )
  Beniaminus | Nov 1, 2017 |
452 p.
  BmoreMetroCouncil | Feb 9, 2017 |
A great handbook for anyone looking to do break down data sets in Python. This won't teach you what to look for or how to do data analysis, but it will show you all the tools to get it done. ( )
  trilliams | May 30, 2015 |
Visar 4 av 4
inga recensioner | lägg till en recension
Du måste logga in för att ändra Allmänna fakta.
Mer hjälp finns på hjälpsidan för Allmänna fakta.
Vedertagen titel
Originaltitel
Alternativa titlar
Första utgivningsdatum
Personer/gestalter
Viktiga platser
Viktiga händelser
Relaterade filmer
Priser och utmärkelser
Motto
Dedikation
Inledande ord
Citat
Avslutande ord
Särskiljningsnotis
Förlagets redaktörer
På baksidan citeras
Ursprungsspråk
Kanonisk DDC/MDS

Hänvisningar till detta verk hos externa resurser.

Wikipedia på engelska (2)

Python for Data Analysis is concerned with the nuts and bolts of manipulating, processing, cleaning, and crunching data in Python. It is also a practical, modern introduction to scientific computing in Python, tailored for data-intensive applications. This is a book about the parts of the Python language and libraries you'll need to effectively solve a broad set of data analysis problems. This book is not an exposition on analytical methods using Python as the implementation language. Written by Wes McKinney, the main author of the pandas library, this hands-on book is packed with practical cases studies. It's ideal for analysts new to Python and for Python programmers new to scientific computing. Use the IPython interactive shell as your primary development environment Learn basic and advanced NumPy (Numerical Python) features Get started with data analysis tools in the pandas library Use high-performance tools to load, clean, transform, merge, and reshape data Create scatter plots and static or interactive visualizations with matplotlib Apply the pandas groupby facility to slice, dice, and summarize datasets Measure data by points in time, whether it's specific instances, fixed periods, or intervals Learn how to solve problems in web analytics, social sciences, finance, and economics, through detailed examples

Inga biblioteksbeskrivningar kunde hittas.

Bokbeskrivning
Haiku-sammanfattning

Snabblänkar

Populära omslag

Betyg

Medelbetyg: (3.7)
0.5
1
1.5
2 1
2.5
3 5
3.5 4
4 7
4.5
5 3

Är det här du?

Bli LibraryThing-författare.

 

Om | Kontakt | LibraryThing.com | Sekretess/Villkor | Hjälp/Vanliga frågor | Blogg | Butik | APIs | TinyCat | Efterlämnade bibliotek | Förhandsrecensenter | Allmänna fakta | 155,811,925 böcker! | Topplisten: Alltid synlig