HemGrupperDiskuteraMerTidsandan
Denna webbplats använder kakor för att fungera optimalt, analysera användarbeteende och för att visa reklam (om du inte är inloggad). Genom att använda LibraryThing intygar du att du har läst och förstått våra Regler och integritetspolicy. All användning av denna webbplats lyder under dessa regler.
Hide this

Resultat från Google Book Search

Klicka på en bild för att gå till Google Book Search.

Laddar...

Database anonymization : privacy models, data utility, and…

av Josep Domingo-Ferrer

MedlemmarRecensionerPopularitetGenomsnittligt betygDiskussioner
3Ingen/inga3,234,656Ingen/ingaIngen/inga
The current social and economic context increasingly demands open data to improve scientific research and decision making. However, when published data refer to individual respondents, disclosure risk limitation techniques must be implemented to anonymize the data and guarantee by design the fundamental right to privacy of the subjects the data refer to. Disclosure risk limitation has a long record in the statistical and computer science research communities, who have developed a variety of privacy-preserving solutions for data releases. This Synthesis Lecture provides a comprehensive overview of the fundamentals of privacy in data releases focusing on the computer science perspective. Specifically, we detail the privacy models, anonymization methods, and utility and risk metrics that have been proposed so far in the literature. Besides, as a more advanced topic, we identify and discuss in detail connections between several privacy models (i.e., how to accumulate the privacy guarantees they offer to achieve more robust protection and when such guarantees are equivalent or complementary); we also explore the links between anonymization methods and privacy models (how anonymization methods can be used to enforce privacy models and thereby offer ex ante privacy guarantees). These latter topics are relevant to researchers and advanced practitioners, who will gain a deeper understanding on the available data anonymization solutions and the privacy guarantees they can offer.… (mer)
Senast inlagd avLibraryImporter

Ingen/inga.

Ingen/inga
Laddar...

Gå med i LibraryThing för att få reda på om du skulle tycka om den här boken.

Det finns inga diskussioner på LibraryThing om den här boken.

Inga recensioner
inga recensioner | lägg till en recension
Du måste logga in för att ändra Allmänna fakta.
Mer hjälp finns på hjälpsidan för Allmänna fakta.
Vedertagen titel
Originaltitel
Alternativa titlar
Första utgivningsdatum
Personer/gestalter
Viktiga platser
Viktiga händelser
Relaterade filmer
Priser och utmärkelser
Motto
Dedikation
Inledande ord
Citat
Avslutande ord
Särskiljningsnotis
Förlagets redaktörer
På baksidan citeras
Ursprungsspråk
Kanonisk DDC/MDS

Hänvisningar till detta verk hos externa resurser.

Wikipedia på engelska

Ingen/inga

The current social and economic context increasingly demands open data to improve scientific research and decision making. However, when published data refer to individual respondents, disclosure risk limitation techniques must be implemented to anonymize the data and guarantee by design the fundamental right to privacy of the subjects the data refer to. Disclosure risk limitation has a long record in the statistical and computer science research communities, who have developed a variety of privacy-preserving solutions for data releases. This Synthesis Lecture provides a comprehensive overview of the fundamentals of privacy in data releases focusing on the computer science perspective. Specifically, we detail the privacy models, anonymization methods, and utility and risk metrics that have been proposed so far in the literature. Besides, as a more advanced topic, we identify and discuss in detail connections between several privacy models (i.e., how to accumulate the privacy guarantees they offer to achieve more robust protection and when such guarantees are equivalent or complementary); we also explore the links between anonymization methods and privacy models (how anonymization methods can be used to enforce privacy models and thereby offer ex ante privacy guarantees). These latter topics are relevant to researchers and advanced practitioners, who will gain a deeper understanding on the available data anonymization solutions and the privacy guarantees they can offer.

Inga biblioteksbeskrivningar kunde hittas.

Bokbeskrivning
Haiku-sammanfattning

Snabblänkar

Populära omslag

Ingen/inga

Betyg

Medelbetyg: Inga betyg.

Är det här du?

Bli LibraryThing-författare.

 

Om | Kontakt | LibraryThing.com | Sekretess/Villkor | Hjälp/Vanliga frågor | Blogg | Butik | APIs | TinyCat | Efterlämnade bibliotek | Förhandsrecensenter | Allmänna fakta | 151,765,047 böcker! | Topplisten: Alltid synlig