HemGrupperDiskuteraMerTidsandan
Denna webbplats använder kakor för att fungera optimalt, analysera användarbeteende och för att visa reklam (om du inte är inloggad). Genom att använda LibraryThing intygar du att du har läst och förstått våra Regler och integritetspolicy. All användning av denna webbplats lyder under dessa regler.
Hide this

Resultat från Google Book Search

Klicka på en bild för att gå till Google Book Search.

Laddar...

Essentials of measure theory

av Carlos S. Kubrusly

MedlemmarRecensionerPopularitetGenomsnittligt betygDiskussioner
1Ingen/inga6,140,312Ingen/ingaIngen/inga
Classical in its approach, this textbook is thoughtfully designed and composed in two parts. Part I is meant for a one-semester beginning graduate course in measure theory, proposing an ℓ́ℓabstractℓ́ℓ approach to measure and integration, where the classical concrete cases of Lebesgue measure and Lebesgue integral are presented as an important particular case of general theory. Part II of the text is more advanced and is addressed to a more experienced reader. The material is designed to cover another one-semester graduate course subsequent to a first course, dealing with measure and integration in topological spaces. The final section of each chapter in Part I presents problems that are integral to each chapter, the majority of which consist of auxiliary results, extensions of the theory, examples, and counterexamples. Problems which are highly theoretical have accompanying hints. The last section of each chapter of Part II consists of Additional Propositions containing auxiliary and complementary results. The entire book contains collections of suggested readings at the end of each chapter in order to highlight alternate approaches, proofs, and routes toward additional results. With modest prerequisites, this text is intended to meet the needs of a contemporary course in measure theory for mathematics students and is also accessible to a wider student audience, namely those in statistics, economics, engineering, and physics. Part I may be also accessible to advanced undergraduates who fulfill the prerequisites which include an introductory course in analysis, linear algebra (Chapter 5 only), and elementary set theory.… (mer)
Senast inlagd avLibraryImporter

Ingen/inga.

Ingen/inga
Laddar...

Gå med i LibraryThing för att få reda på om du skulle tycka om den här boken.

Det finns inga diskussioner på LibraryThing om den här boken.

Inga recensioner
inga recensioner | lägg till en recension
Du måste logga in för att ändra Allmänna fakta.
Mer hjälp finns på hjälpsidan för Allmänna fakta.
Vedertagen titel
Originaltitel
Alternativa titlar
Första utgivningsdatum
Personer/gestalter
Viktiga platser
Viktiga händelser
Relaterade filmer
Priser och utmärkelser
Motto
Dedikation
Inledande ord
Citat
Avslutande ord
Särskiljningsnotis
Förlagets redaktörer
På baksidan citeras
Ursprungsspråk
Kanonisk DDC/MDS

Hänvisningar till detta verk hos externa resurser.

Wikipedia på engelska

Ingen/inga

Classical in its approach, this textbook is thoughtfully designed and composed in two parts. Part I is meant for a one-semester beginning graduate course in measure theory, proposing an ℓ́ℓabstractℓ́ℓ approach to measure and integration, where the classical concrete cases of Lebesgue measure and Lebesgue integral are presented as an important particular case of general theory. Part II of the text is more advanced and is addressed to a more experienced reader. The material is designed to cover another one-semester graduate course subsequent to a first course, dealing with measure and integration in topological spaces. The final section of each chapter in Part I presents problems that are integral to each chapter, the majority of which consist of auxiliary results, extensions of the theory, examples, and counterexamples. Problems which are highly theoretical have accompanying hints. The last section of each chapter of Part II consists of Additional Propositions containing auxiliary and complementary results. The entire book contains collections of suggested readings at the end of each chapter in order to highlight alternate approaches, proofs, and routes toward additional results. With modest prerequisites, this text is intended to meet the needs of a contemporary course in measure theory for mathematics students and is also accessible to a wider student audience, namely those in statistics, economics, engineering, and physics. Part I may be also accessible to advanced undergraduates who fulfill the prerequisites which include an introductory course in analysis, linear algebra (Chapter 5 only), and elementary set theory.

Inga biblioteksbeskrivningar kunde hittas.

Bokbeskrivning
Haiku-sammanfattning

Snabblänkar

Populära omslag

Ingen/inga

Betyg

Medelbetyg: Inga betyg.

Är det här du?

Bli LibraryThing-författare.

 

Om | Kontakt | LibraryThing.com | Sekretess/Villkor | Hjälp/Vanliga frågor | Blogg | Butik | APIs | TinyCat | Efterlämnade bibliotek | Förhandsrecensenter | Allmänna fakta | 151,466,833 böcker! | Topplisten: Alltid synlig