HemGrupperDiskuteraMerTidsandan
Känner du till SantaThing, LibraryThings julklappsbyte?
avfärda
Denna webbplats använder kakor för att fungera optimalt, analysera användarbeteende och för att visa reklam (om du inte är inloggad). Genom att använda LibraryThing intygar du att du har läst och förstått våra Regler och integritetspolicy. All användning av denna webbplats lyder under dessa regler.
Hide this

Resultat från Google Book Search

Klicka på en bild för att gå till Google Book Search.

Machine Learning: A Constraint-Based…
Laddar...

Machine Learning: A Constraint-Based Approach (utgåvan 2017)

av Marco Gori Ph.D. (Författare)

MedlemmarRecensionerPopularitetGenomsnittligt betygDiskussioner
5Ingen/inga2,056,360Ingen/ingaIngen/inga
Machine Learning: A Constraint-Based Approach provides readers with a refreshing look at the basic models and algorithms of machine learning, with an emphasis on current topics of interest that includes neural networks and kernel machines. The book presents the information in a truly unified manner that is based on the notion of learning from environmental constraints. While regarding symbolic knowledge bases as a collection of constraints, the book draws a path towards a deep integration with machine learning that relies on the idea of adopting multivalued logic formalisms, like in fuzzy systems. A special attention is reserved to deep learning, which nicely fits the constrained- based approach followed in this book. This book presents a simpler unified notion of regularization, which is strictly connected with the parsimony principle, and includes many solved exercises that are classified according to the Donald Knuth ranking of difficulty, which essentially consists of a mix of warm-up exercises that lead to deeper research problems. A software simulator is also included.… (mer)
Medlem:BibliotecaAgrovet
Titel:Machine Learning: A Constraint-Based Approach
Författare:Marco Gori Ph.D. (Författare)
Info:Morgan Kaufmann (2017), Edition: 1, 580 pages
Samlingar:Ditt bibliotek
Betyg:
Taggar:Ingen/inga

Verkdetaljer

Machine Learning: A Constraint-Based Approach av Marco Gori Ph.D.

Ingen/inga.

Ingen/inga
Laddar...

Gå med i LibraryThing för att få reda på om du skulle tycka om den här boken.

Det finns inga diskussioner på LibraryThing om den här boken.

Inga recensioner
inga recensioner | lägg till en recension
Du måste logga in för att ändra Allmänna fakta.
Mer hjälp finns på hjälpsidan för Allmänna fakta.
Vedertagen titel
Originaltitel
Alternativa titlar
Första utgivningsdatum
Personer/gestalter
Viktiga platser
Viktiga händelser
Relaterade filmer
Priser och utmärkelser
Motto
Dedikation
Inledande ord
Citat
Avslutande ord
Särskiljningsnotis
Förlagets redaktörer
På baksidan citeras
Ursprungsspråk
Kanonisk DDC/MDS

Hänvisningar till detta verk hos externa resurser.

Wikipedia på engelska

Ingen/inga

Machine Learning: A Constraint-Based Approach provides readers with a refreshing look at the basic models and algorithms of machine learning, with an emphasis on current topics of interest that includes neural networks and kernel machines. The book presents the information in a truly unified manner that is based on the notion of learning from environmental constraints. While regarding symbolic knowledge bases as a collection of constraints, the book draws a path towards a deep integration with machine learning that relies on the idea of adopting multivalued logic formalisms, like in fuzzy systems. A special attention is reserved to deep learning, which nicely fits the constrained- based approach followed in this book. This book presents a simpler unified notion of regularization, which is strictly connected with the parsimony principle, and includes many solved exercises that are classified according to the Donald Knuth ranking of difficulty, which essentially consists of a mix of warm-up exercises that lead to deeper research problems. A software simulator is also included.

Inga biblioteksbeskrivningar kunde hittas.

Bokbeskrivning
Haiku-sammanfattning

Snabblänkar

Populära omslag

Betyg

Medelbetyg: Inga betyg.

Är det här du?

Bli LibraryThing-författare.

 

Om | Kontakt | LibraryThing.com | Sekretess/Villkor | Hjälp/Vanliga frågor | Blogg | Butik | APIs | TinyCat | Efterlämnade bibliotek | Förhandsrecensenter | Allmänna fakta | 152,637,551 böcker! | Topplisten: Alltid synlig