HemGrupperDiskuteraMerTidsandan
Denna webbplats använder kakor för att fungera optimalt, analysera användarbeteende och för att visa reklam (om du inte är inloggad). Genom att använda LibraryThing intygar du att du har läst och förstått våra Regler och integritetspolicy. All användning av denna webbplats lyder under dessa regler.
Hide this

Resultat från Google Book Search

Klicka på en bild för att gå till Google Book Search.

Laddar...

Applications of Analytic and Geometric Methods to Nonlinear Differential…

av P.A. Clarkson

MedlemmarRecensionerPopularitetGenomsnittligt betygDiskussioner
4Ingen/inga2,679,627Ingen/ingaIngen/inga
In the study of integrable systems, two different approaches in particular have attracted considerable attention during the past twenty years. (1) The inverse scattering transform (IST), using complex function theory, which has been employed to solve many physically significant equations, the `soliton' equations. (2) Twistor theory, using differential geometry, which has been used to solve the self-dual Yang--Mills (SDYM) equations, a four-dimensional system having important applications in mathematical physics. Both soliton and the SDYM equations have rich algebraic structures which have been extensively studied. Recently, it has been conjectured that, in some sense, all soliton equations arise as special cases of the SDYM equations; subsequently many have been discovered as either exact or asymptotic reductions of the SDYM equations. Consequently what seems to be emerging is that a natural, physically significant system such as the SDYM equations provides the basis for a unifying framework underlying this class of integrable systems, i.e. `soliton' systems. This book contains several articles on the reduction of the SDYM equations to soliton equations and the relationship between the IST and twistor methods. The majority of nonlinear evolution equations are nonintegrable, and so asymptotic, numerical perturbation and reduction techniques are often used to study such equations. This book also contains articles on perturbed soliton equations. Painlevé analysis of partial differential equations, studies of the Painlevé equations and symmetry reductions of nonlinear partial differential equations. (ABSTRACT) In the study of integrable systems, two different approaches in particular have attracted considerable attention during the past twenty years; the inverse scattering transform (IST), for `soliton' equations and twistor theory, for the self-dual Yang--Mills (SDYM) equations. This book contains several articles on the reduction of the SDYM equations to soliton equations and the relationship between the IST and twistor methods. Additionally, it contains articles on perturbed soliton equations, Painlevé analysis of partial differential equations, studies of the Painlevé equations and symmetry reductions of nonlinear partial differential equations.… (mer)
Senast inlagd avmorphismus, rooktn, cbgjr

Inga taggar

Ingen/inga.

Ingen/inga
Laddar...

Gå med i LibraryThing för att få reda på om du skulle tycka om den här boken.

Det finns inga diskussioner på LibraryThing om den här boken.

Inga recensioner
inga recensioner | lägg till en recension
Du måste logga in för att ändra Allmänna fakta.
Mer hjälp finns på hjälpsidan för Allmänna fakta.
Vedertagen titel
Originaltitel
Alternativa titlar
Första utgivningsdatum
Personer/gestalter
Viktiga platser
Viktiga händelser
Relaterade filmer
Priser och utmärkelser
Motto
Dedikation
Inledande ord
Citat
Avslutande ord
Särskiljningsnotis
Förlagets redaktörer
På baksidan citeras
Ursprungsspråk
Kanonisk DDC/MDS

Hänvisningar till detta verk hos externa resurser.

Wikipedia på engelska

Ingen/inga

In the study of integrable systems, two different approaches in particular have attracted considerable attention during the past twenty years. (1) The inverse scattering transform (IST), using complex function theory, which has been employed to solve many physically significant equations, the `soliton' equations. (2) Twistor theory, using differential geometry, which has been used to solve the self-dual Yang--Mills (SDYM) equations, a four-dimensional system having important applications in mathematical physics. Both soliton and the SDYM equations have rich algebraic structures which have been extensively studied. Recently, it has been conjectured that, in some sense, all soliton equations arise as special cases of the SDYM equations; subsequently many have been discovered as either exact or asymptotic reductions of the SDYM equations. Consequently what seems to be emerging is that a natural, physically significant system such as the SDYM equations provides the basis for a unifying framework underlying this class of integrable systems, i.e. `soliton' systems. This book contains several articles on the reduction of the SDYM equations to soliton equations and the relationship between the IST and twistor methods. The majority of nonlinear evolution equations are nonintegrable, and so asymptotic, numerical perturbation and reduction techniques are often used to study such equations. This book also contains articles on perturbed soliton equations. Painlevé analysis of partial differential equations, studies of the Painlevé equations and symmetry reductions of nonlinear partial differential equations. (ABSTRACT) In the study of integrable systems, two different approaches in particular have attracted considerable attention during the past twenty years; the inverse scattering transform (IST), for `soliton' equations and twistor theory, for the self-dual Yang--Mills (SDYM) equations. This book contains several articles on the reduction of the SDYM equations to soliton equations and the relationship between the IST and twistor methods. Additionally, it contains articles on perturbed soliton equations, Painlevé analysis of partial differential equations, studies of the Painlevé equations and symmetry reductions of nonlinear partial differential equations.

Inga biblioteksbeskrivningar kunde hittas.

Bokbeskrivning
Haiku-sammanfattning

Snabblänkar

Populära omslag

Betyg

Medelbetyg: Inga betyg.

Är det här du?

Bli LibraryThing-författare.

 

Om | Kontakt | LibraryThing.com | Sekretess/Villkor | Hjälp/Vanliga frågor | Blogg | Butik | APIs | TinyCat | Efterlämnade bibliotek | Förhandsrecensenter | Allmänna fakta | 151,594,955 böcker! | Topplisten: Alltid synlig